A poroelastic model coupled to a fluid network with applications in lung modelling.

نویسندگان

  • Lorenz Berger
  • Rafel Bordas
  • Kelly Burrowes
  • Vicente Grau
  • Simon Tavener
  • David Kay
چکیده

We develop a lung ventilation model based on a continuum poroelastic representation of lung parenchyma that is strongly coupled to a pipe network representation of the airway tree. The continuous system of equations is discretized using a low-order stabilised finite element method. The framework is applied to a realistic lung anatomical model derived from computed tomography data and an artificially generated airway tree to model the conducting airway region. Numerical simulations produce physiologically realistic solutions and demonstrate the effect of airway constriction and reduced tissue elasticity on ventilation, tissue stress and alveolar pressure distribution. The key advantage of the model is the ability to provide insight into the mutual dependence between ventilation and deformation. This is essential when studying lung diseases, such as chronic obstructive pulmonary disease and pulmonary fibrosis. Thus the model can be used to form a better understanding of integrated lung mechanics in both the healthy and diseased states. Copyright © 2015 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A poroelastic model of the lung

This work is motivated by the modelling of ventilation and deformation in the lung for understanding the biomechanics of respiratory diseases. The main contribution is the derivation and implementation of a lung model that tightly couples a poroelastic model of lung parenchyma to an airway fluid network. The poroelastic model approximates the porous structure of lung parenchyma using a continuu...

متن کامل

Behavior of a hydraulic fracture in permeable formations

The permeability and coupled behavior of pore pressure and deformations play an important role in hydraulic fracturing (HF) modeling. In this work, a poroelastic displacement discontinuity method is used to study the permeability effect on the HF development in various formation permeabilities. The numerical method is verified by the existing analytical and experimental data. Then the propagati...

متن کامل

A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic material

The interaction between a fluid, elastic structure, and poroelastic material plays a fundamental role in many biomedical applications. An example of such application is the interaction between blood, arterial wall and blood clot. This multi-physics problem features three different types of coupling: fluid-elastic structure coupling, fluid-poroelastic material coupling, and elastic structure-por...

متن کامل

A CFD and FEM Approach to a Multicompartmental Poroelastic Model for CSF Production and Circulation with Applications in Hydrocephalus Treatment and Cerebral Oedema

This study introduces a Multiple-Network Poroelastic Theory (MPET) model, coupled with finitevolume based Computational fluid dynamics (CFD) for the purpose of studying, in detail, the effects of obstructing Cerebrospinal fluid (CSF) transport within an image-derived cerebral environment. The MPET representation allows the investigation of fluid transport between CSF, brain parenchyma and cereb...

متن کامل

Vibro-acoustic analysis of lightweight composite panels with damping materials

In this paper a numerical model to study the vibro-acoustic behavior of a laminated plate backed by a poroelastic foam layer is developed. Such approach consists on a coupled mitigation strategy aiming either mechanical vibration suppression or acoustic attenuation as well. The laminated plate model consists of fiber laminae with interleaved viscoelastic layers in standard constrained or integr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal for numerical methods in biomedical engineering

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2016